首页> 外文OA文献 >Bivariate Markov chains converging to Lamperti transform Markov Additive Processes
【2h】

Bivariate Markov chains converging to Lamperti transform Markov Additive Processes

机译:双变量马尔可夫链收敛到Lamperti变换markov添加剂   流程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivated by various applications, we describe the scaling limits ofbivariate Markov chains $(X,J)$ on $\mathbb Z_+ \times \{1,\ldots,\kappa\}$where $X$ can be viewed as a position marginal and $\{1,\ldots,\kappa\}$ is aset of $\kappa$ types. The chain starts from an initial value $(n,i)\in \mathbbZ_+ \times \{1,\ldots,\kappa\}$, with $i$ fixed and $n \rightarrow \infty$, andtypically we will assume that the macroscopic jumps of the marginal $X$ arerare, i.e. arrive with a probability proportional to a negative power of thecurrent state. We also assume that $X$ is non-increasing. We then observedifferent asymptotic regimes according to whether the rate of type change isproportional to, faster than, or slower than the macroscopic jump rate. Inthese different situations, we obtain in the scaling limit Lamperti transformsof Markov additive processes, that sometimes reduce to standard positiveself-similar Markov processes. As first examples of applications, we study thenumber of collisions in coalescents in varying environment and the scalinglimits of Markov random walks with a barrier. This completes previous resultsobtained by Haas and Miermont as well as Bertoin and Kortchemski in themonotype setting. In a companion paper, we will use these results as a buildingblock to study the scaling limits of multi-type Markov branching trees, withapplications to growing models of random trees and multi-type Galton-Watsontrees.
机译:根据各种应用的动机,我们描述了$ \ mathbb Z_ + \ times \ {1,\ ldots \\ kappa \} $上的双变量马尔可夫链$(X,J)$的缩放极限,其中$ X $可以看作是位置边际和$ \ {1,\ ldots,\ kappa \} $是一组$ \ kappa $类型。该链从\ mathbbZ_ + \ times \ {1,\ ldots \\ kappa \} $中的初始值$(n,i)\开始,其中$ i $是固定的,$ n \ rightarrow \ infty $,通常我们会假设边际$ X $区域的宏观跳跃,即以与当前状态的负幂成正比的概率到达。我们还假定$ X $不增加。然后,我们根据类型变化的速率与宏观跳跃速率成正比,大于还是小于宏观跳跃率来观察不同的渐近状态。在不同的情况下,我们在缩放极限中获得了马尔可夫加法过程的Lamperti变换,有时将其简化为标准的自相似马尔可夫过程。作为第一个应用示例,我们研究了在变化的环境中聚结中的碰撞次数以及带障碍物的马尔可夫随机游动的比例极限。这样就完成了Haas和Miermont以及Bertoin和Kortchemski在单型设置中获得的先前结果。在随附的论文中,我们将使用这些结果作为基础来研究多类型马尔可夫分支树的缩放极限,并将其应用于随机树和多类型Galton-Watsontrees的增长模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号